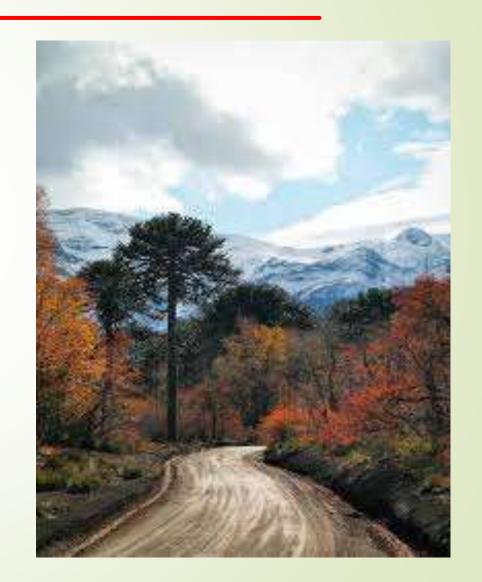


Diagnóstico de laboratorio de las disfunciones plaquetarias y de la enfermedad de von Willebrand

BQ. EDUARDO ARANDA L.

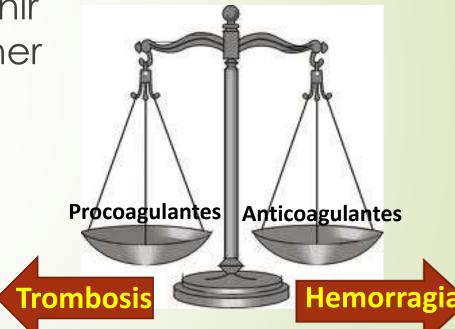
COORDINADOR GRUPO DE TRABAJO PREANALÍTICO


COLABIOCLI

UCARAMA@GMAIL.COM

30 de junio y 1^{ero} de julio de 2023, Hotel Holiday Inn Convention Center, Managua, Nicaragua

Hoja de ruta


- Panorámica de la Hemostasia.
- o/ Hemostasia primaria.
- Trastornos y enfermedades de la Hemostasia primaria.
- Estudio de laboratorio de la Hemostasia primaria.
- Enfermedad de von Willebrand.
- Estudio de laboratorio del FVW

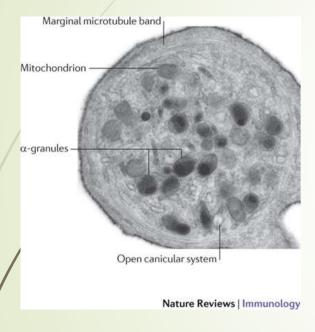
¿Qué es Hemostasia?

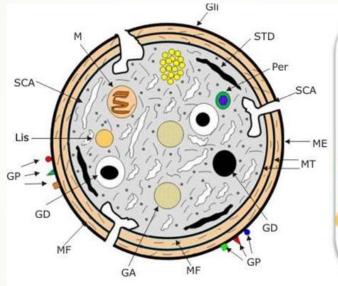
La hemostasia es un proceso complejo que permite prevenir la pérdida de sangre y detener la hemorragia, causada por daños al sistema vascular.

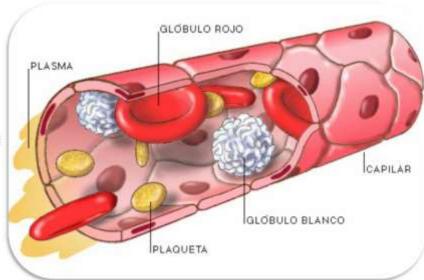
La hemostasia perfecta significa: No hay sangrado ni trombosis

Panorámica de la Hemostasia

- Los componentes del sistema de la hemostasia son la pared del vaso sanguíneo, las plaquetas y las proteínas de la coagulación.
- La sangre que circula dentro del lecho vascular está contenida por la pared de los vasos sanguíneos y por el soporte de los tejidos circundantes.
- La ruptura de esta integridad activa el sistema hemostático que evita o detiene la hemorragia, hacia los tejidos blandos o hacia el exterior.


Panorámica de la Hemostasia


- Detenida la hemorragia y consolidado el tapón hemostático, se activa el sistema de la fibrinólisis.
- Estos componentes son interdependientes, finamente modulados y constituyen una unidad inseparable.


Panorámica de la Hemostasia

- Por motivos didácticos, por su diferente expresión clínica y desde su estudio en el laboratorio, se han dividido estos procesos en:
 - Hemostasia primaria
 - Hemostasia secundaria
 - Fibrinolisis

Plaqueta y vaso sanguíneo

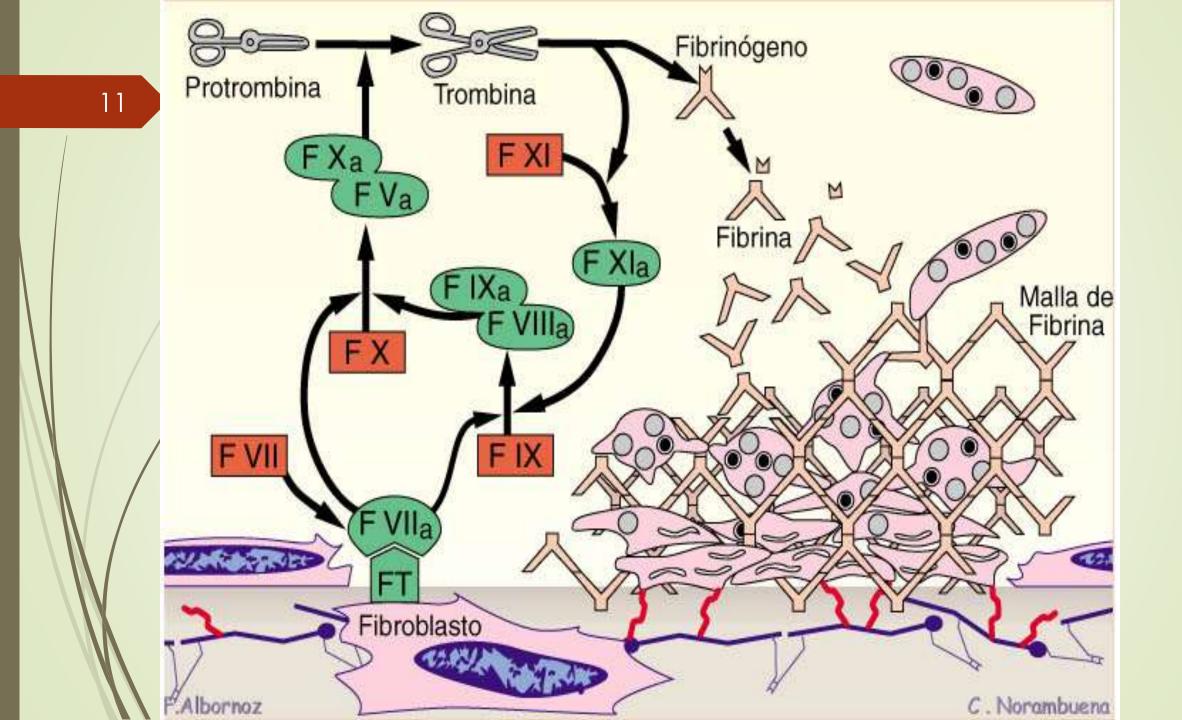
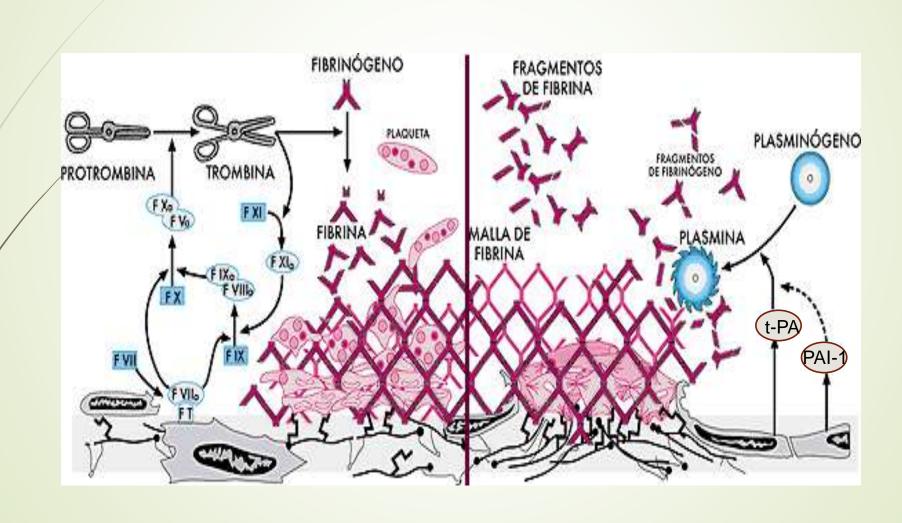

GA: gránulo alfa; GD: gránulo denso: Glu: glucógeno; GP: glicoproteínas; Lis: lisosoma; M: mitocondria; MF: microfilamento; MT: microtúbulos; ME: membrana externa; Per: peroxisoma; SCA: sistema canicular abierto; STD: sistema tubular denso.

Fig. 1. Esquema de las principales características de la ultraestructura plaquetaria.


Elementos sintetizados por las células endoteliales: Inhibidor de la vía del factor tisular (TFPI), Prostaciclina (PG I₂), Activador tisular del plasminógeno, Trombomodulina, Factor von Willebrand.

Hemostasia primaria

- La hemostasia primaria consiste en la interacción entre las plaquetas y la pared del vaso sanguíneo.
 - Adhesión
 - Cambio de forma
 - Agregación
 - Secreción
 - Exposición de superficie pro-coagulante

Fibrinolisis

Trastornos y enfermedades de la hemostasia primaria

- Enfermedad de von Willebrand
 - Defectos cuantitativo o cualitativo en la proteína plasmática factor von Willebrand (FvW)
- Variedad de disfunciones plaquetarias (adquiridas o hereditarias)
 - Asociadas a ciertas patologías (Insuficiencia renal, insuficiencia hepática)
 - Drogas anti plaquetarias, alimentos e infusiones de hierbas medicinales, etc.
 - Alteraciones de la adhesión, defectos de agregación, deficiencia de gránulos, alteraciones de las señales de activación.

Disfunciones plaquetarias hereditarias

- Alteraciones de la adhesión.
 - Síndrome de Bernard –Soulier, Enfermedad de seudo von Willebrand
- Defectos de la agregación
 - Tromboastenia de Glanzmann
- Deficiencia en gránulos y/o secreción.
 - Deficiencia de los gránulos (pool de almacenamiento), α , δ , α y δ
- Alteración en las señales de activación.
 - Defectos de receptor de agonistas y vías de señalización
- Defectos en la actividad procoagulante.
 - Síndrome de Scott
- Defectos misceláneos de la función plaquetaria.
 - Defectos de secreción primario.
 - Otros (osteogenesis imperfecta, Ehler-Danlos, Hermasky-Pudlak)

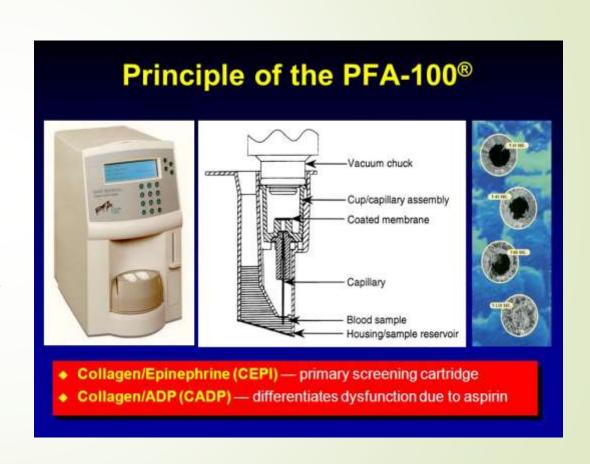
Estudios de laboratorio de Hemostasia

Pruebas básicas de laboratorio:

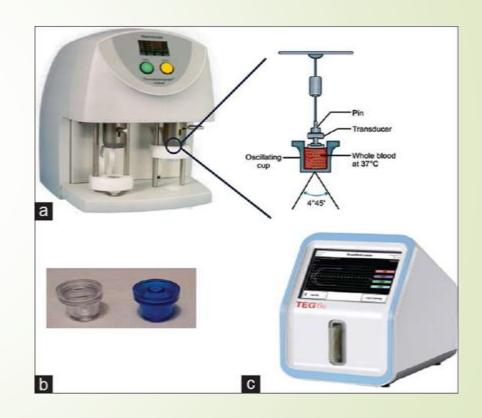
- TP, TTPA, recuento y morfología plaquetaria
- Pruebas globales o de "screening"
 - Tiempo de Sangría
 - Analizador de la función plaquetaria in vitro (PFA-200 ®)
 - Ensayos viscoelásticos (TEG / ROTEM)
- Estudios para determinar la causa de la alteración.
 - Estudio de función plaquetaria (agregación/secreción).
 - Estudio del Factor von Willebrand (FvW).
 - Estudios especiales (citometría de flujo, estudios de receptores por electroforesis, ME)
 - Diagnóstico molecular, mutaciones específicas, estudios genéticos.

Tiempo de Sangría

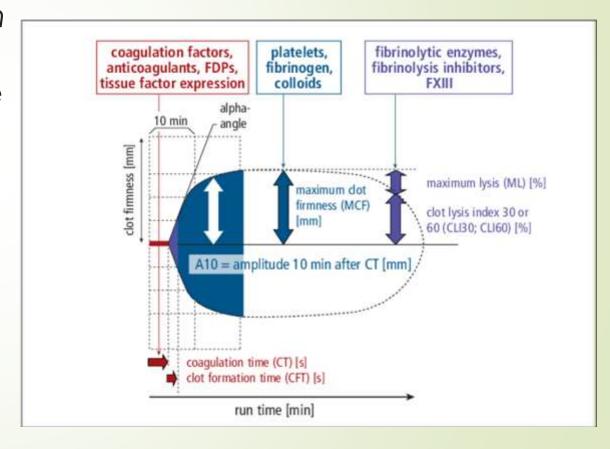
- Invasivo


- Required un profesional entrenado
- Bajo valor predictivo para el sangrado quirúrgico.

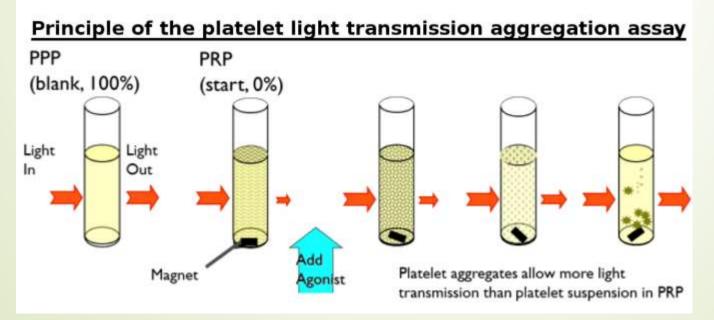
Analizador de la Función Plaquetaria (PFA)

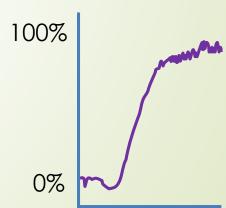

Utilidad propuesta

- Pesquisa para Enfermedad de von Willebrand (EvW)
- Efecto de DDAVP en la terapia de EvW
- Ayuda a valorar el riesgo de sangramiento prequirúrgico
- Efecto de drogas antiplaquetarias


Ensayos viscoelásticos: Tromboelastometría (ROTEM)

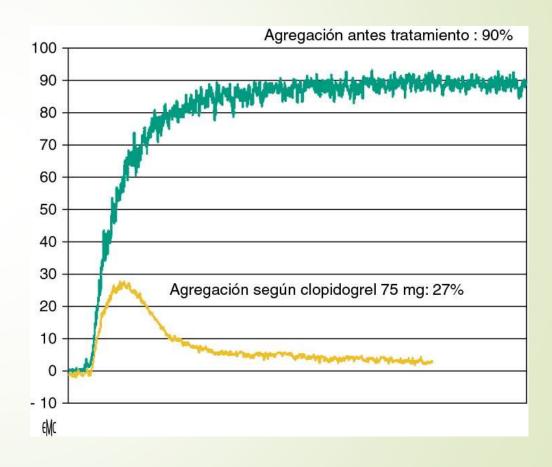
- Mide los cambios viscoelásticos que ocurren durante la formación de un coagulo.
- Está influenciado por la función plaquetaria, factores de coagulación, inhibidores de la coagulación y la fibrinolisis.

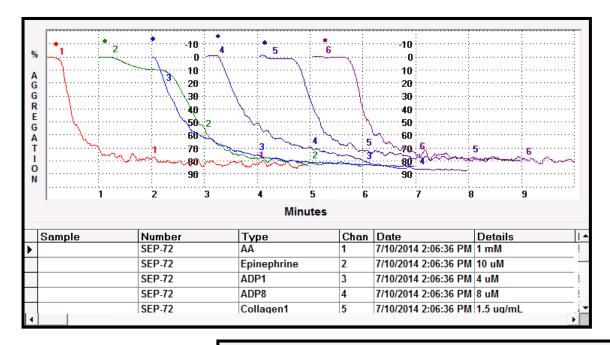

Tromboelastometría


- Permite realizar un análisis in vitro de la relación entre los diferentes componentes de la coagulación.
- Permite mejorar las conductas y tomas de decisión de los médicos anestesiólogos e intensivistas.
- Ahorro en unidades de sangre.

Agregometría por transmisión de luz

La agregometría mide la trasmisión de luz a través de una muestra de suspensión de plaquetas (PRP), la que aumenta cuando las plaquetas se agregan con un agonista.

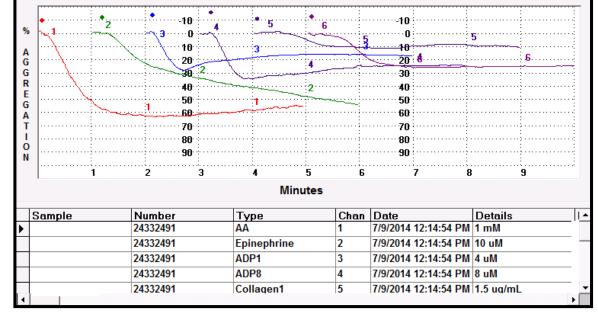



Mecanismos de acción de los agonistas

- Epinefrina: induce la agregación a través de receptores α₂adrenérgicos, que trasmiten la señal a la proteína G, inhibiendo la adenilatociclasa.
- **ADP**: Actúa sobre receptores específicos de la membrana plaquetaria $(P_2X_1, P_2Y_1 y P_2Y_{12})$
- Acido araquidónico: difunde a través de la membrana plaquetaria y se metaboliza en TXA₂
- Colágeno: Actúa sobre receptores GPIalla y GPVI y produce cambio de forma, secreción y agregación.
- TRAP : activa la plaqueta a través de receptores PAR₁ y PAR₄

Agregometría por transmisión de luz

- Una vez que las plaquetas son estimuladas por el agonista, ellas cambian de forma, y se agregan,
- El incremento de transmitancia puede llegar a un plateau (agregación irreversible), o también regresar hacia la línea base (agregación reversible)

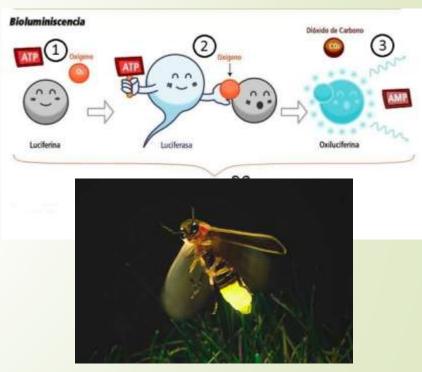


Agregación normal Equipo: PAP 8, BIO/DATA Corporation

Efecto de droga antiplaquetaria

Agregometría por transmisión de luz

Ventajas:


- Es un método de diagnóstico y el gold estándar histórico.
- Es flexible.
- Se puede investigar diferentes vías plaquetarias.
- Sensible a terapias antiplaquetarias.

Desventajas:

- Procesamiento de muestra manual.
- Variables preanalíticas.
- Gran volumen de muestra.
- Consumidor de tiempo y operador con experiencia y pericia.

Lumiagregometría (Secreción)

- La lumiagregometria es una versión modificada de LTA, que permite medir la secreción de los gránulos densos de las plaquetas, en paralelo a la agregación.
- El ATP liberado se mide usando extractos de luciérnagas (luciferina/luciferasa), resultando en una emisión de luz (bioluminiscencia).

Esto pasa dentro de una luciérnaga.

Citometría de flujo

- El citómetro de flujo es un instrumento sofisticado y caro, pero ya está disponible en muchos laboratorios.
- Usa Ac Mo específicos contra antígenos plaquetarios, marcados con fluoróforos.
- Permite medir la reactividad plaquetaria in vitro, y detectar plaquetas activadas, agregados plaquetas-leucocitos y micro partículas derivadas de plaquetas.

Anticuerpo monoclonal	Estructura antigénica	Función
CD62P	P selectina	Activación plaquetaria
CD41	GPIIb	Agregación
CD61	GPIIIa	
PAC-1	GPIIb/IIIa de alta afinidad	Ambas estructuras conforman el receptor para el fibrinógeno
CD42a	GPIX	Adhesión
CD42b	GPIba	
CD42c	GPlbb	Todas estas subunidades conforman el receptor del factor von Willebrand
CD42d	GPV	
CD36	GPIV	Receptor para la trombospondina y el colágeno
CD63	GP53	Proteína lisosomal
CD51	RVNa	Cadena a del receptor de vitronectina

Ensayos de secreción plaquetaria

- La secreción plaquetaria puede medirse por varios ensayos de laboratorio.
 - El más común es la lumiagregometria que mide la secreción de ATP.
 - Otros métodos incluyen la liberación de 5-HT(14C) radioactiva de plaquetas pre cargadas.
 - Medir el contenido de 5-HT plaquetaria por ELISA, HPLC con detección fluorimétrica o electróquímica.
 - Medición de la secreción de proteínas de gránulos alfa (PF-4 o βTG) por ELISA o expresión de P-selectina sobre la membrana de las plaquetas.

Síndrome de Bernard-Soulier Patología del complejo GP lb/IX/V

Recuento de plaquetas: Disminuido

■ Tamaño plaquetario : Aumentado

Tiempo de sangría : Aumentado

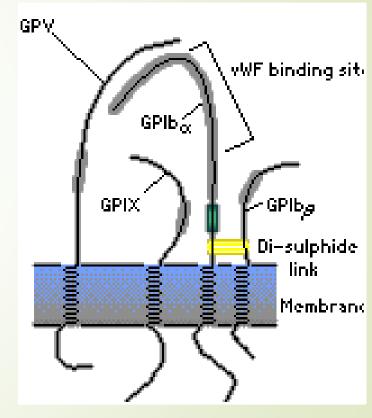
Adhesión plaquetaria : Alterada

Agregación plaquetaria

Epinefrina

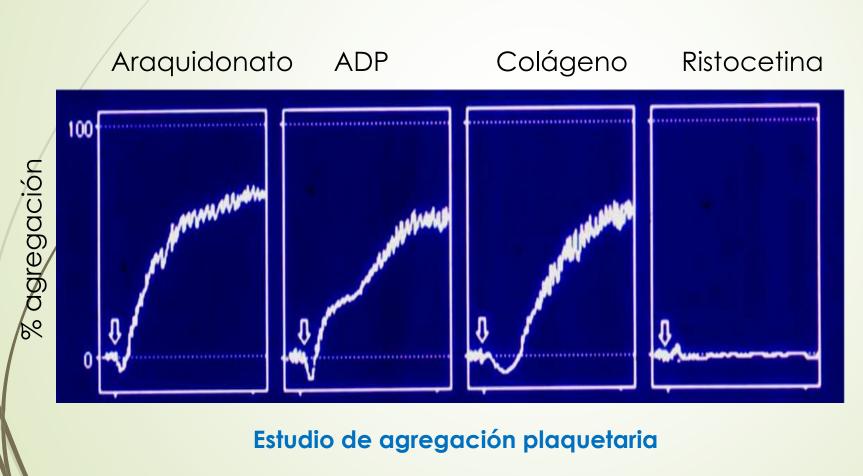
ADP

Colágeno

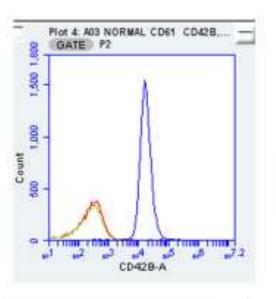

Trombina

Araquidonato

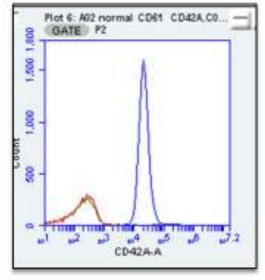
Aglutinación con ristocetina : Disminuida/ausente


Normal

Retracción del coágulo : Normal


Complejo GP lb/IX/V

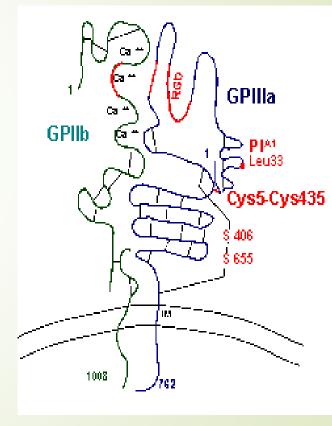
Síndrome de Bernard-Soulier Estudio de laboratorio


kd 205 K -116 K -97 K -66 K -45 K -29 K -20 K -14 K -

SDS-PAGE de lisado de plaquetas

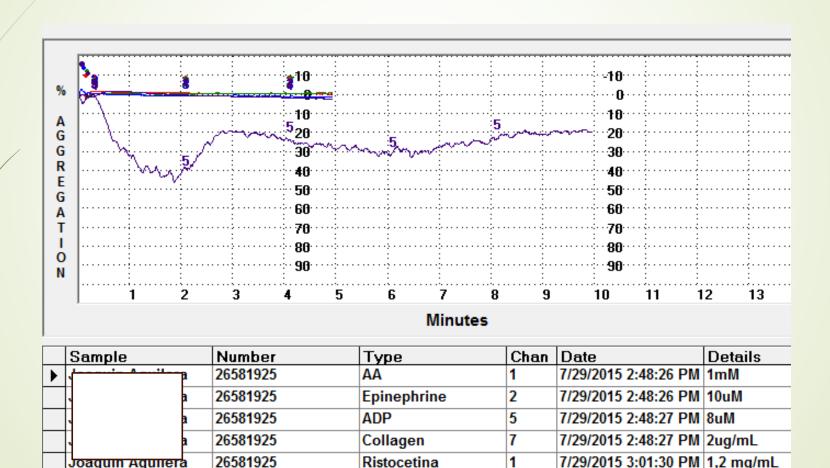
Síndrome de Bernard-Soulier Estudio de citometría

GP lb (CD42b)	IMF
Control Normal	23475
Hermana 1	234
Hermana 2	138

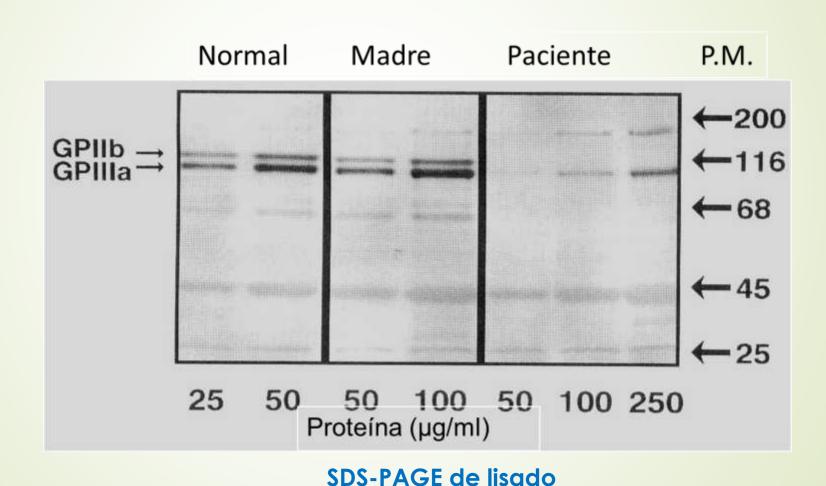


GP IX(CD42a)	IMF
Control Normal	10112
Hermana 1	246
Hermana 2	204

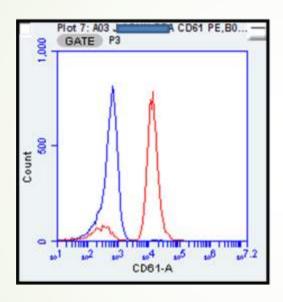
Enfermedad de Glanzmann Patología del complejo GP IIb/IIIa


Anormal

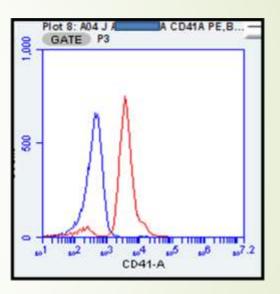
- Recuento de plaquetas : Normal
- Tamaño plaquetario : Normal
- Tiempo de sangría : Aumentado
- Adhesión plaquetaria: Normal
- Agregación plaquetaria
 - Epinefrina
 - ADP
 - Colágeno
 - Trombina
 - Araquidonato
- Aglutinación con ristocetina: Normal
- Retracción del coágulo : Anormal


Complejo GP IIb/IIIa

Enfermedad de Glanzmann Patología del complejo GP IIb/IIIa


Estudio de agregación plaquetaria

Enfermedad de Glanzmann Estudio de glicoproteínas


de plaquetas

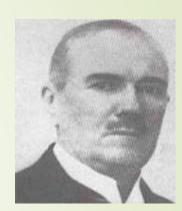
Enfermedad de Glanzmann Estudio de citometría

Anti GP IIIa

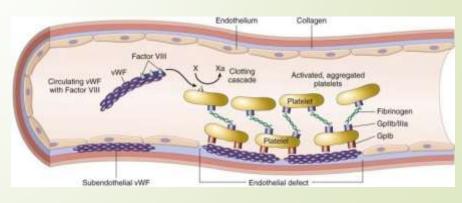
IMF PACIENTE:728
IMF CONTROL:16046

Anti GP IIb

IMF PACIENTE:512


IMF CONTROL:5496

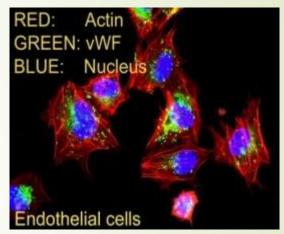
Conclusiones

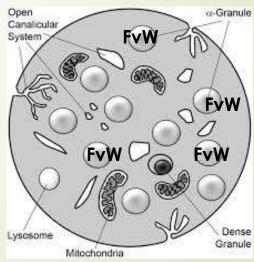

- Los ensayos globales de hemostasia primaria no son de utilidad diagnóstica, en el estudio de función plaquetaria.
- A pesar de los años, la Agregación por trasmisión de luz, es aún el método más común para estudiar la función plaquetaria.
- Sin embargo, no es lo suficientemente sensible para detectar el más común de los defectos de función plaquetaria, que son los defectos de secreción.

ENFERMEDAD DE VON WILLEBRAND (EVW)

La enfermedad hemorrágica hereditaria más frecuente de la hemostasia primaria, generalmente de tipo autosómico dominante, causada por una disminución cuantitativa y/o funcional del factor von Willebrand, que produce un defecto de adhesión a las plaquetas.

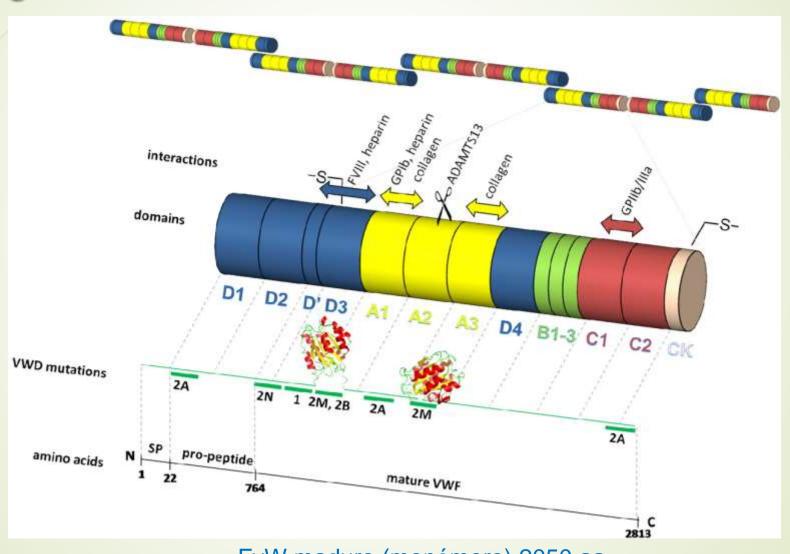
Erik von Willebrand

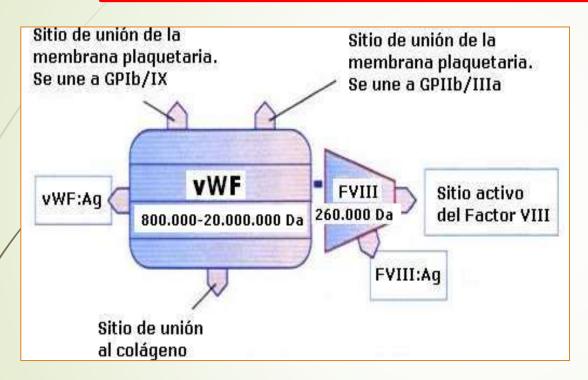


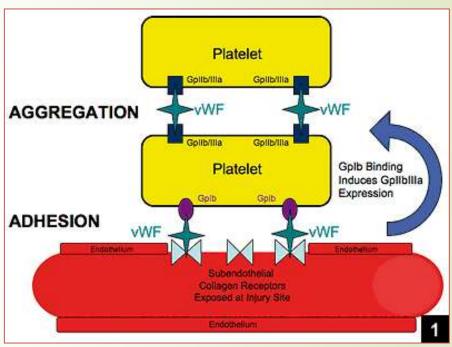

Enfermedad de von Willebrand

- El 0.8% a 1,3% de la población general tiene nivel de FVW bajo, pero sólo 1,25/10.000 presenta síntomas de EVW.
- La frecuencia y gravedad de las hemorragias mucocutáneas son muy variables.
- FVW es un reactante de fase aguda.

¿Qué es el Factor von Willebrand?


- El FVW es una proteína sintetizada por células endoteliales (CE), desde donde es secretado al plasma, a la matriz subendotelial o almacenado en corpúsculos de Weibel-Palade de CE.
- El FVW es sintetizado por los megacariocitos, y almacenado en gránulos alfa plaquetario.
- Después de su secreción, sufre un proceso progresivo de proteólisis por una metaloproteinasa (ADAMTS 13).


Plaqueta


¿Qué es el Factor von Willebrand?

FvW maduro (monómero) 2050 aa.

Funciones del FvW

Durante la adhesión y agregación plaquetaria, el FvW actúa como puente entre receptores plaquetarios (GPIb, GPIIb/IIIa y colágeno).

Funciones del FvW

- •El FvW es el trasportador y estabilizador del FVIII.
- •El FvW estimularía la síntesis del F VIII desde sus sitios de producción y prolongaría su vida media.
- •El tamaño del FvW es importante, teniendo multímeros de alto, mediano y bajo peso molecular. Las formas multiméricas de mayor peso molecular son las más activas.

Factores que regulan los niveles FvW

- Edad y sexo
- Grupo sanguíneo
- Estar embarazada
- Cambios hormonales durante el ciclo menstrual de la mujer
- Función tiroidea

- Uso de anticonceptivo oral
- Tener una infección
- Stress
- Ejercicio
- Haber tenido una trasfusión de sangre reciente

Sitio y frecuencia de las hemorragias en la EVW

Localización	%
Epistaxis	79
Equimosis	76
Alveolorragia	50*
Gingivorragia	47
Hemorragia prolongada por heridas menores	48
Hemorragia intra o poscirugía	60*
Menorragia	59*
Hemorragia posparto	56*
Hemartrosis, hematomas	9
Otras (hemorragia digestiva alta, rectorragia, hematuria, hemorragia frenillo labial, otorragia)	21

^{*} Porcentaje calculado sobre el total de pacientes sometido al riesgo de hemorragia analizada. Mezzano et al, Rev Med Chil 1986

Clasificación de la EvW

Tipo 1	Defecto cuantitativo leve de FvW. (85-90% de los casos)
Tipo 2	Defecto cualitativo del FvW.
Tipo 2A	Variante cualitativa, con disminución de la adhesión a las plaquetas, asociado a ausencia de multímeros de FvW de PM intermedio.
Tipo 2B	Variante cualitativa, con aumento de afinidad por el receptor GPIb de las plaquetas y asociada a ausencia de multímeros de alto PM y trombocitopenia.
Tipo 2M	Variante cualitativa, con disminución de la adhesión a las plaquetas, no causada por disminución de multímeros de alto PM.
Tipo 2N	Variante cualitativa, con disminución de afinidad del FvW por el Factor VIII.
Tipo 3	Defecto cuantitativo grave, con virtual ausencia de FvW plasmático.

Diagnóstico de laboratorio de EvW

- Para la pesquisa de EvW no existe un ensayo ideal, que sea simple, sensible y con bajos falsos negativos.
- TTPA y Tiempo de sangría: + en EvW tipo 3, normales en pacientes con formas leves.
- El estudio básico de hemostasia SUGIERE alteración, no confirma ni descarta.

Diagnóstico de laboratorio de EvW

 Todas estas dificultades para diagnosticar la enfermedad de von Willebrand, nos obliga a poner máxima atención a la medición del Complejo FvW: FVIII

Diagnóstico de la EvW Fase preanalítica

- Paciente en ayuna
- Alejado de un estado inflamatorio o infeccioso.
- No estar embarazada e idealmente sin anticonceptivo oral.
- Alejado de un estado de estrés, o esfuerzo físico.
- La toma de muestra debe ser, en lo posible, lo menos traumática...

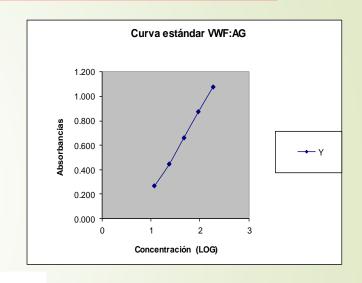
Estudio de laboratorio de la EvW

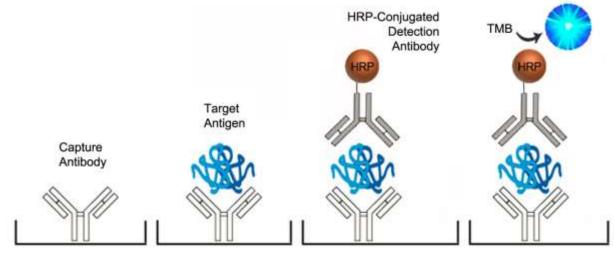
Pruebas de screening u orientadoras

- Tiempo de sangría (TS) PFA-200, recuento plaquetario.
- Tiempo de tromboplastina parcial activado TTPa
- Factor VIII coagulante (FVIII:C) método en una etapa o cromogénico.

Pruebas específicas o confirmatoria

- Determinación cuantitativa del antígeno del FvW (FvW:Ag) ELISA, Latex IA, quimioluminiscencia.
- Actividad del FvW (actividad cofactor ristocetina, FvW:CoRis) por agregometria.

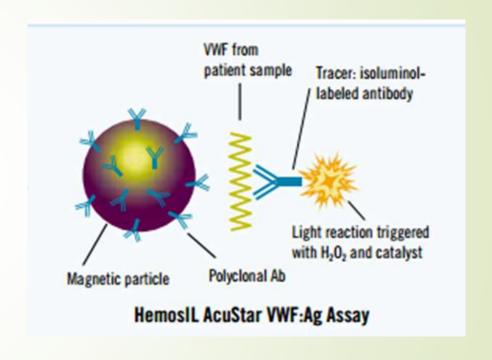

Pruebas para el diagnóstico de subtipos


- Aglutinación de las plaquetas inducida por ristocetina (RIPA)
- Análisis de la composición multimérica del FvW:Ag plasmático.
- Capacidad de unión del FvW al colágeno
- Capacidad de unión del FvW al FVIII

Factor von Willebrand antigénico (FVW:Ag) Manual

Técnica ELISA: (Dako)

- ✓ AP anti-VWF
- ✓ Bloqueo con Albúmina bovina
- ✓ Diluciones de PPP (curva de calibración, pacientes, controles)
- ✓AP anti VWF-peroxidasa
- ✓ Revelado con TMB
- ✓ Absorbancia a 450nm y 620nm como referencia

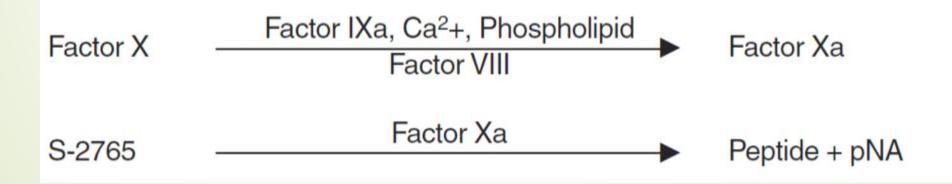


HemosIL VWF: Ag Inmunoensayo quimio Iuminiscente. Automatizado

- Partículas magnéticas recubiertas con un anticuerpo PM anti VWF se une al VWF capturado
- Anticuerpo de revelado unido a isoluminol.
- Con la adición de desencadenantes, la luz se emite proporcionalmente a la concentración de antígeno VWF en la muestra

Actividad del FvW (FvW:CoRis)

- El FvW:CoRis es un ensayo funcional que sirve para evaluar las propiedades de adhesión del FvW, al interactuar con plaquetas normales, en presencia de ristocetina.
- El FvW:CoRis se encuentra disminuido en casi todas las formas de la EvW.

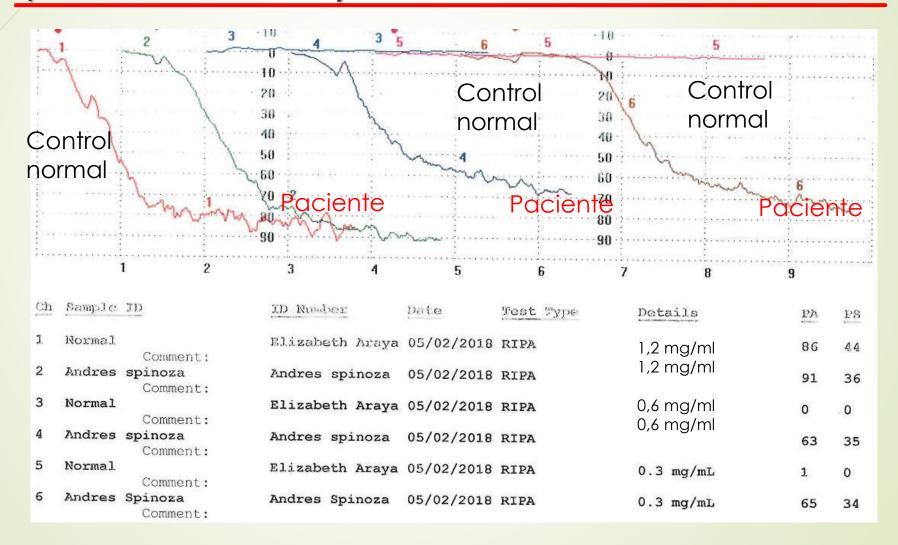


Técnica FvW:CoRis

- ✓ Plaquetas normales fijadas (formaldehído)
- √Incubación 5 min a 37°C
- ✓ Ristocetina 1.2 mg/ml
- ✓ Dilución PPP (Curva de cal, pacientes
- y controles)
- ✓ Medición de la aglutinación por transmitancia, cálculo de la pendiente.

FVIII cromogénico

- Diferenciar una deficiencia real de FVIII de interferencia de un inhibidor de tipo lúpico.
- Medir el FVIII sin pasar por un TTPA



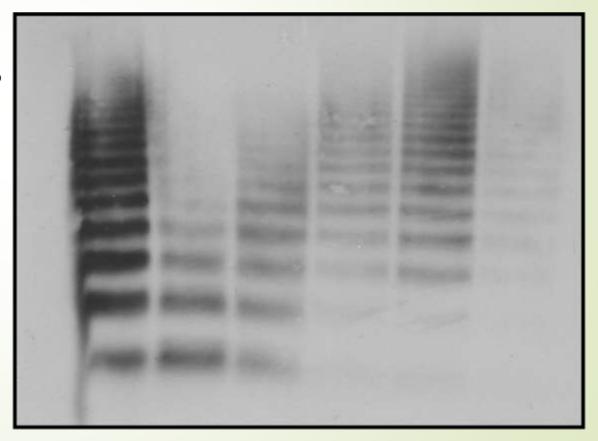
RIPA (Aglutinación plaquetaria inducida por Ristocetina)

Técnica Aglutinación Plaquetaria:

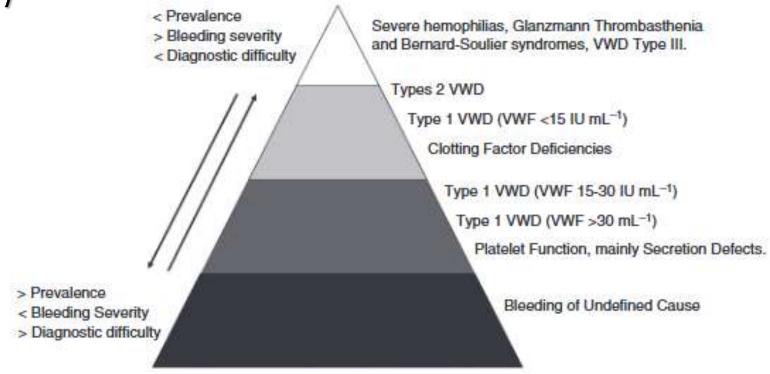
- ✓ PRP 250.000 plaquetas/ul (Plaquetas lavadas resuspendidas en plasma paciente o plasma control)
- ✓ + Ristocetina (0.6 mg/ml final)
 - ▶ Normal, tipo 2A, 2M, y 3 = aglutinación plaquetaria negativa
 - Tipo 2B = aglutinación plaquetaria positiva
- ✓ + Ristocetina (1.2 mg/ml final)
 - Tipo 1 muy severo, 2A, 2M y 3 = aglutinación plaquetaria negativa
 - ▶ Normal, Tipo 1 leve, 2B y 2N = aglutinación plaquetaria positiva

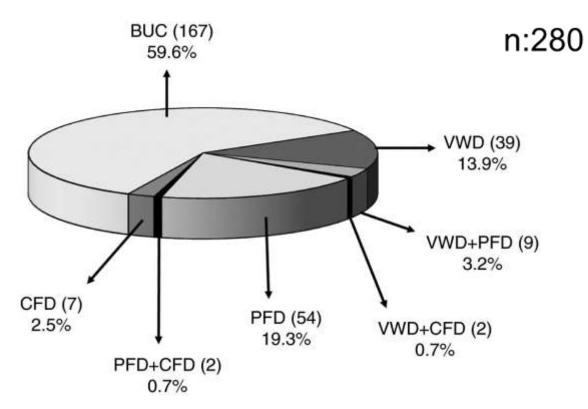
RIPA (Aglutinación plaquetaria inducida por Ristocetina)

Multimeros FvW


Western Blot:

- ✓ Gel de agarosa de 1,5 % a 3% en condición denaturante
- ✓ Electroforesis
- ✓ Transferencia en membrana
- ✓ AP-anti VWF-peroxidasa
- ✓ Revelado por luminiscencia




Defectos de sangramiento de causa indefinida (BUC)

 Prevalencia relativa, severidad del sangramiento y dificultadad diagnóstica de los defectos de sangramiento hereditarios.

Quiroga T.et al.; Hematology Am Soc Hematol Educ Program 2012: 466–74.

Desafíos diagnósticos de los trastornos hemorrágicos leves hereditarios



Journal of Thrombosis and Haemostasis, Volume: 17, Issue: 2, Pages: 257-270, 18 December 2018

VWD: Enfermedad de von Willebrand, tipo 1
PFD: Trastornos de la función plaquetaria.
CFD: Deficiencias de factores de la coagulación.
BUC: Sangrado de causa indefinida.

Conclusiones y Recomendaciones

- Los resultados anormales y discordantes deben ser repetidos.
- La deficiencia específica de Factores y algunos defectos plaquetarios deben ser considerados, si están indicados clínicamente.
- No desilusionarse. Si se puede implementar los ensayos.
- Podemos asesorar y recibir en nuestro laboratorio a los interesados en aprender como diagnosticar esta enfermedad.

laboratorio clinico

"La investigación de las enfermedades ha avanzado tanto que es cada vez más difícil encontrar a alguien que esté completamente sano" **Aldous Huxley**

¡Gracias por su atención!